
Enabling Conflict-free Collaborations with Cloud
Storage Services

Minghao Zhao, Jian Chen, and Zhenhua Li*

School of Software, Tsinghua University
{zhaominghao.thu, chenjian1995.thu, lizhenhua1983}@gmail.com

Abstract—Cloud storage services (e.g., Dropbox) have become
pervasive in not only simple file sharing but also advanced
collaborative file editing (collaboration for short). Using Dropbox
for collaboration is much easier than SVN and Git, thus greatly
facilitating common users. In practice, however, many Dropbox
users are perplexed by unexpected collaboration conflicts, which
severely impair their experiences. Through various benchmark
experiments, we unveil the two root causes of collaboration con-
flicts: 1) Dropbox never locks an edited file during collaboration;
2) Dropbox only guarantees eventual data consistency among
the collaborators, significantly aggravating the probability of
conflicts.

In this paper, we attempt to enable conflict-free collaborations
with Dropbox-like cloud storage services. This attempt is empow-
ered by three key findings and measures. First, although the end-
to-end sync delay is unpredictable due to eventual consistency,
we can always track the latest version of an edited file by
actively resorting to the cloud via certain web APIs. Second,
although all application-level data is encrypted in Dropbox, we
can roughly deduce the sync status from traffic statistics. Third,
applying a couple of useful mechanisms (e.g., distributed archi-
tecture and data lock) learned from Git, we can effectively and
efficiently avoid collaboration conflicts—of course, this requires
re-implementing Git mechanisms in cloud storage services with
minimum overhead and user interference. Integrating above
efforts, we build the ConflictReaper system capable of helping
users automatically avoid almost all collaboration conflicts with
affordable network and computation overhead.

Index Terms—cloud storage, consistency, collaborations, net-
work measurement, Dropbox

I. INTRODUCTION

Cloud storage services, such as Dropbox, Microsoft
OneDrive, Google Drive, and iCloud Drive, have quickly
become pervasive in recent years. As a representative cloud
storage service released in 2007, Dropbox has owned more
than 500 million users working in over 200,000 companies and
organizations [4]. These users store or update 1.2 billion files
every day and make around 4000 file edits every second [3].
Moreover, Microsoft OneDrive, Google Drive, and iCloud
Drive each has attracted more than 700 million users [2].

Conventionally, cloud storage services provide their users
with reliable and ubiquitous file backup and retrieval functions.
They further support simple file sharing across users; here
simple means that the shared files are immutable. In addition,
some services (e.g., Dropbox) offer more advanced functions
such as collaborative file editing (abbreviated as collaboration)
where multiple users can edit a shared file via the cloud

* Corresponding author

storage. Specifically, in Dropbox, every user owns a designated
local folder (called a “sync folder”) in which every data
update is automatically noticed and synced to the cloud by
the Dropbox client software [46]. Afterwards, the data update
is automatically propagated by the cloud to the sync folder(s)
of the other user(s) who share the file (called collaborators).
When everything goes smooth, using Dropbox for collabora-
tions is much easier than using VCS (Version Control Systems)
like SVN and Git, since the users do not need to understand
and manipulate the complex VCS primitives (e.g., pull, push,
comment, and clone). This greatly facilitates those computer
non-professionals in online collaborations.

Despite the high usability, many Dropbox users are per-
plexed by unexpected collaboration conflicts in practice, which
severely impair their experiences [19]. In particular, even if the
collaborators (say Alice and Bob) always edit their shared file
(say f.txt) in a sequential manner and possess fine network
connections, they may be confronted with conflicting files in
their sync folders, like f.txt and f (Bob’s conflicted copy 2021-
11-11).txt. When such conflicts happen, the collaborators have
to manually fix the problem with considerable efforts, even
with the help of Dropbox’s “version history” feature [7].

Through various benchmark experiments, we unveil the
two root causes of collaboration conflicts in Dropbox: 1)
Unlike certain version control systems [60], Dropbox never
locks an edited file to avoid conflicts during collaboration; 2)
Dropbox only guarantees eventual data consistency among the
collaborators, thus significantly aggravating the probability of
conflicts. As shown in Figure 1, after Alice edits a shared
file, her Dropbox client syncs the data update to the cloud as
soon as possible [Step 1] [47], but the notification for the data
update is then propagated by the cloud to Bob’s Dropbox client
with an unpredictable delay (ranging from a few seconds to
several hours). According to the design principle of Dropbox’s
edge network [6], [13], we infer that the notification is first
pushed to a message queue [Step 2] and then popped to Bob by
the message queue [Step 3]. Dropbox’s leveraging a message
queue for notification propagation is quite understandable,
since Dropbox often has to propagate an unpredictably large
number of concurrent notifications and message queue turns
out to be a cost-effective solution (that trades a part of sync
speed for affordable infrastructure cost and guaranteed sync
success).

With the above findings, we attempt to enable conflict-free
collaborations with Dropbox-like cloud storage services. This

Bob

Dropbox

Alice

1. update

3'. lock & wait

3. pop with
unpredictable delay

Message Queue

Registration
Server

2'. notify

Mapping: account IP
Heartbeat: user state

5'. check,
pull on

demand

ConflictReaper

2. notify

4'. traffic statistics

Dropbox Client

Fig. 1: Architectural overview of Dropbox and ConflictReaper
on handling cross-user collaborations.

attempt is empowered by the following three insights. First,
although the end-to-end sync delay is unpredictable due to
eventual consistency, we can always obtain the latest version
of an edited file by actively resorting to the Dropbox cloud via
certain web APIs (e.g., list_folder, get_metadata,
and download [5]). This finding offers us the feasibility to
convert unpredictably long sync delay into predictably short
sync delay, with small network/computation overhead.

In principle, we can develop a watchdog program for each
collaborator to periodically check the state of every shared
file through web APIs. The length of the period, however,
is hard to configure: a short period incurs too much system
overhead while a long period leads to poor user experience. An
intuitive approach is to replace periodical checking with on-
demand checking, which requires the watchdog to understand
the sync status (e.g., start an update, finish an update, get a
notification, begin a download, and finish a download) of its
corresponding Dropbox client. Unfortunately, all application-
level data is encrypted in Dropbox through HTTPS (TLSv1.2),
including the sync status. Fortunately, through extensive mea-
surement, we are able to deduce the sync status from the
statistics of encrypted traffic (especially the traffic volume,
upload/download speed, and bursty pattern). This information
can help a watchdog to determine when to send its traffic
statistics to other watchdog(s).

With the knowledge of file state and sync status, we
still need considerable extra mechanisms to fulfill the whole
collaboration process. Here we do not want to “re-invent
the wheels” to achieve this goal; instead, we apply a couple
of useful mechanisms (e.g., distributed architecture and data
lock) learned from Git to effectively and efficiently avoid col-
laboration conflicts. Of course, this requires re-implementing
Git mechanisms in cloud storage services with minimum
overhead and user interference. We distribute a watchdog
program to locally assist each Dropbox client, coupled with a
lightweight registration server for mapping user accounts to
IP addresses and collecting heartbeat messages that report user
states. Moreover, we implement implicit data lock by closely
monitoring a user’s file operations in a lightweight manner
(e.g., using inotify in Linux or FileSystemWatcher
in Windows). Any file operation that may potentially bring

conflicts will trigger a pop-up warning.
Integrating all above efforts, we build the ConflictReaper

system to help users automatically avoid almost all collabora-
tion conflicts in Dropbox with affordable network/computation
overhead and little user interference. As illustrated in Figure 1,
a user only needs to run the watchdog program which is the
client side of ConflictReaper. As soon as Alice starts a data
update on a shared file f [Step 1], Alice’s watchdog notices
it and sends a notification to Bob’s watchdog [Step 2’]. On
receiving the notification, Bob’s watchdog implicitly locks f
and then waits for Alice’s traffic statistics to come [Step 3’].
Note that Alice’s watchdog sends Alice’s traffic statistics when
it deduces that the data update has been successfully synced
to the cloud [Step 4’]. After receiving Alice’s traffic statistics,
Bob’s watchdog constantly records and analyzes Bob’s traffic
statistics; if it is necessary, Bob’s watchdog will actively check
and pull the latest version of f through web APIs [Step 5’].

We implement ConflictReaper in ∼2500 lines of C# code
for the watchdog and ∼650 lines of Java code for the reg-
istration server, all of which are publicly available at https://
ConflictReaper.github.io. Hundreds of computer professionals
and non-professionals have used our Windows clients and
returned positive feedback. In typical realistic collaboration
scenarios, the network overhead brought by ConflictReaper
is ∼14 KBps, i.e., less than 1% of the total sync traffic of
Dropbox. Meanwhile, the computation overhead is ∼3% CPU
utilization on a single core. Finally, ConflictReaper works
independently of Dropbox in essence, so it also generalizes to
other cloud storage services such as Microsoft OneDrive [12],
Google Drive [10], and Amazon Drive [1].

II. MOTIVATING ANALYSIS

To explore the root causes of collaboration conflicts in
Dropbox, we conduct black-box measurements to investigate
the work flow of collaborative editing on a shared file by two
users (say Alice and Bob). Alice uses a laptop in San Francisco
while Bob uses a desktop in New Haven; they each use a 100-
Mbps Internet connection.

Simultaneous editing. First, we let Alice and Bob open and
edit a shared text file at roughly the same time. We observe
either of them can locally finish both open and edit operations
without any impediments or warnings from Dropbox. This
clearly indicates that Dropbox never locks the shared file
during collaboration, which is an essential reason for the
occurrence of conflicts.

Alternate editing. In practice, Alice and Bob seldom edit
a shared file at the same time. Instead, they typically edit it
alternately. If Alice first makes an edit and then Bob keeps
waiting for the corresponding sync notification to come, the
state of the file will eventually become consistent for Alice
and Bob. However, we notice a key issue that prevents such
eventual consistency from working well, i.e., the end-to-end
sync time for Alice’s edit to be propagated to Bob varies
significantly (between a few seconds to hours) and can hardly
be predicted. During the sync time (or says sync delay), once

https://ConflictReaper.github.io
https://ConflictReaper.github.io

Alice AliceBob BobCloud Cloud

(a) (b)

0s

14s
16s

46s

0s

17s

100s

135s

45s
55s

34s

Fig. 2: Time sequence diagram of (a) a typical simultaneous
edit and (b) a typical alternate edit.

Bob makes another edit to the file—this is fairly likely to
happen in real-world scenarios—conflicts will occur.

Quantifying the sync delay. According to the above ex-
periments, we plot the time sequence diagram of a typical
simultaneous edit and a typical alternate edit in Figure 2(a)
and Figure 2(b), respectively. From both figures, we find that
it always takes a short period of time (usually just a few
seconds) for Dropbox to upload the file edit to the cloud,
except when the edit size is pretty large (note that Dropbox
leverages the delta sync approach to reduce the sync traffic
of a file edit [47]). On the contrary, downloading the file
edit from the cloud often takes a longer period of time and
the period seems unpredictable. As mentioned in §I, this can
be reasonably ascribed to Dropbox’s utilization of a message
queue for propagating sync notifications [6], [13].

Status quo. In both Figure 2(a) and Figure 2(b), after Alice
and Bob upload their own file versions to the cloud, the
Dropbox server will retain both versions, and the later one
arriving at the server will be marked as “the conflict version.”
Afterwards, both versions will be delivered to Alice and Bob,
who then have to merge the different versions manually—
definitely suffering experiences.

As a matter of fact, Dropbox has noticed the problem
and launched Dropbox Badge [18], as a partially solution.
We have studied the workflow of Dropbox Badge through
measurement-based reverse engineering. We find that Dropbox
Badge adopts the periodical checking (polling) to probe and
retrieve the latest version of a shared file from the cloud, thus
incurring heavy network traffic overhead. Note that Dropbox
Badge is not a general solution but only works for documents
in the format of Microsoft Office (e.g., Word, PowerPoint, and
Excel). In this work, we strive towards a generic solution that
applies to any file types, while avoiding expensive polling.

III. CONFLICTREAPER

Driven by the findings in §II, we design ConflictReaper
to assist users automatically avoid collaboration conflicts in
Dropbox with affordable overhead. This section presents the
design of ConflictReaper (§III-A), and describes the imple-
mentation of each component (§III-B).

 ConflictReaper Client

File Operation
Monitor

Dropbox API
Manager

Process Deduc-
ing Handler

 Alice

File Locker

Registration
Server

 ConflictReaper
Client

 Bob

Dropbox
Folder Dropbox

Folder

Fig. 3: System structure of ConflictReaper with modularized
components.

A. System Design

Figure 3 gives an overview of ConflictReaper, which con-
sists of ConflictReaper Client and Registration Server. Each
ConflictReaper user (say Alice and Bob) installs Conflic-
tReaper Client locally. As shown in Figure 3, a ConflictReaper
client contains four modules: File Operation Monitor, Traffic
Measurement Agent, Notification Handler, and Dropbox API
Manager. File Operation Monitor is used to monitor the editing
behaviors of users, and report file status to other clients. Traffic
Measurement Agent aims to collect and analyze network traffic
information, in order to deduce the sync status. Subsequently,
the sync status is submitted to Notification Handler, which
is responsible for triggering the corresponding file lock or
unlock. Dropbox API Manager is designed to call Dropbox
Web APIs to retrieve the latest version of a given file. Design
details of these modules are elaborated in §III-B.

Registration Server stores user registration information, and
mappings among users who share same files. When a user
Alice logins, she submits the username along with her IP
address to one of the registration servers, acquiring all the IP
addresses of other users who share files with her. Using the
acquired username-IP mappings, as shown in Figure 3, Alice
can directly establish connection to other peers, say Bob.

B. Implementation

File Operation Monitor. This module aims to capture file
modifications through file monitoring. We use effective key-
board typings—which exclude the typings not causing any file
modifications such as a single keying of control—as signals
of the beginning of modifications. Using specific APIs (e.g.,
setWindowsHookEx in Windows and input_event in
Linux), we can accurately monitor all the typing behaviors.
When a keyboard typing is captured, ConflictReaper checks
whether this typing affects files in the shared folder. If so,
ConflictReaper identifies that the user is modifying a shared
file and immediately informs collaborators to lock the file.

The file saving operation indicates the completion of file
modification, so an update sync is needed. Normally, the
file saving will be accompanied by storage device write-in,
which is a simple file system operation and can be caught
by file system monitor. Thus, we use the action of storage
device write-in as the completion of file modification and the
beginning of the file uploading process.

0 10 20 30
Time (Second)

10

102

103

104

N
et

w
or

k
O

ve
rh

ea
d

(K
B

ps
)

Dropbox Traffic

Fig. 4: Network traffic of Dropbox.

Traffic Measurement Agent and Notification Handler.
Once the user saves the modified file in the shared folder, the
Dropbox client immediately and automatically uploads this file
to the cloud. ConflictReaper needs to know the status of this
uploading process, because we want to track this updated file
and trigger other peers’ lock or unlock operations. However,
the data traffic of the Dropbox client is strongly encrypted
(with TLS); thus, it is difficult to acquire sync status from the
traffic content.

We conduct an experiment to understand the variation
feature of traffic in uploading a file. As shown in Figure 4, the
traffic of Dropbox gradually increases (i.e., chunk comparison
for delta sync), followed by a sharp increase (i.e., starting of
data transmission). After retaining stable (maybe with slight
fluctuation), a rapid decline appears (i.e., completion of data
transmission). Driven by this feature, we propose a traffic
measure-based protocol, deployed in Notification Handler
module, to determine when to unlock the shared file.

Specifically, Alice’s Notification Handler uses Traffic Mea-
surement Agent to record the traffic (denoted as Fa) and time
(denoted as Ta) consumed during the file uploading process.
Then, the handler sends the traffic Fa and time Ta to Bob’s
client. Until receiving Fa and Ta, Bob’s client begins to count
the total traffic (denoted as Fb), and at the same time records
the elapsing time (denoted as Tb). If Fb gets equal to Fa

before Tb reaches Ta (i.e., Fb = Fa and Tb < Ta), it can be
indicated that the file has been successfully downloaded, as the
downloading phase consumes roughly the same traffic as the
uploading phase. ConflictReaper then unlocks the shared file.
Otherwise, if Tb gets equal to Ta before Fb approaches at Fa

(i.e., Tb = Ta and Fb < Fa), this indicates that the file has not
been downloaded to the client in excepted time. This normally
happens when the message queue in the Dropbox server is
long, leading to long delay. ConflictReaper will check the
consistency between the local file and the cloud file; if a newer
version exists in the cloud, ConflictReaper will download it
through Web APIs.

Dropbox API Manager. Dropbox provides a set of web
APIs for developers, which allow programmable read/write
access to the files stored in the Dropbox cloud. Although it
takes a long time for Dropbox to push a file from the cloud

to the client, only a short period is required to retrieve the file
through the provided APIs. We conducted an experiment to
accurately evaluate the efficiency gap of these two methods
in acquiring files from the cloud. For Dropbox APIs, the sync
time is the duration of download; whereas the sync time of
automatic synchronization with Dropbox client is measured
from when a file is successfully uploaded to the cloud to
when it is synchronized to the client. As shown in Figure 5,
the overwhelming percentage number of downloading tasks
can be accomplished within 2 seconds through APIs, whereas
automatic synchronization with Dropbox client requires at
least 25 seconds, and most of the cases require 50 seconds.
Thus it is feasible to “immediately” get the latest version at
cloud by actively fetching it with Web APIs.

Nevertheless, active fetches can be done aggressively or
conservatively. Fetches too aggressive (e.g., once Bob is no-
tified of Alice’s successfully syncing her edits to the cloud,
he immediately fetches from the cloud) incur considerable
network overhead at both client and server side, as delta sync
is not supported in web-based transmission in Dropbox [48],
[67]. Fetches too conservative may not effectively prevent
conflicts. Thus, we should make a tradeoff between conflict
probability and network overhead. Our basic idea is: if a
file (esp., a large file) is updated by only a small part, it is
preferable for Bob to wait for a certain period of time (Twait),
as the latest version of the file is highly likely to arrive (without
active fetches) in Twait. To this end, we devise:

Twait =
file size− sync traffic

bandwidth
+ TP99, (1)

where file size denotes the file size, and bandwidth denotes
the transfer bandwidth in Bob’s latest downloading from the
cloud. sync traffic, which is contained in the sync status sent
from Alice, denotes the network traffic consumed in Alice’s
uploading the file update to the cloud. TP99 denotes the 99-
percentile delivery time of file updates, which is 312 second
according to our measurement study.

IV. PERFORMANCE EVALUATION

Experiment setup. Our experiment focus on the evaluation
of the computation and network overhead of ConflictReaper.
We do not evaluate the performance of Registration Server,
because 1) the server is only connected and queried once by
each client, and 2) the server is neither the throughput nor the
scalability bottleneck.

As shown in §II, we run ConflictReaper on a laptop located
in San Francisco (say Alice) and a desktop located in New
Haven (say Bob), each with a 100-Mbps Internet connection.
Text documents (i.e., files with format of txt) with the size of
roughly 4 MB are shared between them; once one of these
files is changed by Alice, the revisions will be synchronized
to Bob. We repeat the editing-sync procedure for 2000 times.

Evaluation results. We measure the network overhead
of ConflictReaper and Dropbox. As shown in Figure 6, a
typical sync procedure of Dropbox has two traffic spikes—
the former is for uploading and the latter is for downloading.

0 20 40 60
Sync Time (Second)

0

0.2

0.4

0.6

0.8

1
C

D
F

Dropbox API
Dropbox Client

Fig. 5: Distribution of synchroniza-
tion time used by Dropbox client and
Dropbox Web APIs.

0 20 40 60
Time (Second)

10

102

103

104

N
et

w
or

k
O

ve
rh

ea
d

(K
B

ps
)

Dropbox
ConflictReaper

Notification

Upload

Download

Fig. 6: Network traffic for synchro-
nization using ConflictReaper and
regular Dropbox during collaboration

0 20 40 60
Time (Second)

0

2

4

6

8

C
P

U
 U

til
iz

at
io

n
(%

) Dropbox
ConflictReaper

Fig. 7: CPU utilization for synchro-
nization with ConflictReaper and reg-
ular Dropbox during collaboration.

The uploading phase takes relatively less time. In the middle
of these two spikes, the traffic consumption for ConflictReaper
can be found. In total, the network overhead brought by
ConflictReaper is ∼14 KBps, i.e., less than 1% of the sync
traffic of Dropbox.

We also measure the CPU utilization of ConflictReaper and
Dropbox. As shown in Figure 7, in a typical sync procedure
incurs CPU spikes for both ConflictReaper and Dropbox. The
first two CPU utilization crests for Dropbox are accompanied
with that of ConflictReaper, as the first one appears at the
chunk comparisons and the second one happens when upload-
ing the file to the cloud. Both of these phases are coupled
with traffic transmission and the ConflictReaper is monitoring
the traffic simultaneously. After that, we can see the CPU
utilization of Dropbox (i.e., consistency checking at Bob’s
side), followed by the CPU consumption of ConflictReaper
(i.e., counting the traffic of Dropbox). In sum, ConflictReaper
costs less than 3% CPU utilization on a single core. In
conclusion, ConflictReaper involves negligible network and
CPU overhead.

V. RELATED WORKS

This paper tends to enable conflict-free collaboration with
cloud storage services. In this section, we first briefly introduce
some research on cloud storage, and then describe the research
work of measurements on cloud storage service, as well as
synchronization and collaboration with cloud storage service.

Cloud storage and cloud storage services Recent years
have witnessed the popularity of cloud storage. Among them,
infrastructure level cloud storage, such as Amazon EBS and
S3, are basic facilities in the cloud ecosystem. They provide
different storage models (e.g., block store, object store, file
store, and structured database) and enable users to store or
retrieve data with specific APIs [21], [51]. Since Amazon first
launched its cloud storage product in 2006 (generally regarded
as the beginning of the cloud era), numerous researches have
been done on different aspects of clouds storage, such as
performance [55], [56], power efficiency [31], security [39],
[59], [64], [65], and reliability [52].

Cloud storage services, such as Dropbox and OneDrive, are
normally built on top of cloud storage infrastructures [49],

[54]. Generally, they store data contents in cloud object stores,
and utilize specific cloud resources to maintain filesystem
metadata (e.g., constructing the directory tree of users’ filesys-
tem). For example, Dropbox used to build on top of AWS
infrastructures (e.g., store all data content in S3), and started to
migrate data content to its own deployed MagicPocket object
storage since 2016 [11]. In terms research products, Up to now,
numerous research efforts have been made to design novel data
structures to implement the file-to-object maps and maintain
filesystem structures. These researches (and their correspond-
ing systems) include Cumulus [62], Goofys [9], SVFS [17],
S3FS [15], gcsfuse [8], YAS3FS [20], SCFS [24], S3QL [16],
Agni [49], Panzura [14] H2cloud [70], and BlueSky [63], etc..

Measurements on cloud storage service. Quite a number
of works focus on benchmarking and measurement, of cloud
storage service. These works cover both enterprise [23], [27],
[37], [53] and personal cloud storage service [25], [29], [30],
[33], [35], [58]. Specifically, Palankar et al. [53] conducted
a comprehensive evaluation on whether Amazon S3 is quali-
fied for today’s scientific collaborations. Similarly, Bergen et
al. [23] presented a performance analysis of the Amazon Web
Services, and revealed that the user-perceived performance
is heavily determined by network condition, rather than the
computing ability of the data center. Hill et al. [37] conducted
an experimental analysis on the performance of each compo-
nent inside Windows Azure Platform, and Li et al. [44] mea-
sured the overall performance of elastic computing, persistent
storage and networking services of some mainstream cloud
storage services (e.g., Amazon AWS, Microsoft Azure, Google
AppEngine and Rackspace CloudServers). In [27], a standard
benchmark and benchmarking framework were proposed to
evaluate the performance of cloud data storage system.

In terms of measurement in personal cloud, Hu et al. [40]
firstly evaluated and compared the performance of four popular
commercial cloud service products (e.g., Mozy, Carbonite,
Dropbox, and CrashPlan). Gracia-Tinedo et al. presented the
measurement study of REST interfaces provided by three
personal clouds in [34] and internal structure of UbuntuOne
in [35]. Drago et al. [29], [30], [33] conducted a series of
research on the characteristics of Dropbox, covering the aspect

of storage capability and client behavior. Li et al. [46] and Li et
al. [45] investigated the network traffic in data sync among
cloud storage services. Unlike the aforementioned works that
concentrate on the performance of cloud platforms, the work
[38] regards the cloud platforms as “black-box” and focuses on
observation and analysis of the end-to-end performance from
a client’s perspective.
Synchronization and collaboration with cloud storage ser-
vice. Data/file synchronization is a fundamental functionality
in cloud storage system. It serves as the basic component of
cloud-based collaboration. After years of research, many sync
algorithms, such as Optimistic Deltas [22], rsync [61], Delta
encoding [57], Content Defined Chunking (CDC) [42] and
Efficient Delta Synchronization (EDS) [43] were proposed.
Among them, the rsync has become the de facto delta
sync protocol and been adopted by almost all the mainstream
cloud platforms and operating systems. Many researchers
have conducted a series of research on the respects of data
security [36], [50], consistency [32], [69] and performance
optimization [45], [47] of data/file synchronization in a cloud
(file) system. Recently, the QuickSync [28] and DeltaCFS [68]
were designed for data sync in mobile applications and the
WebR2sync+ [66], [67] was constructed for efficient data sync
in web browsers.

In terms of cloud-based collaboration, CoCloud [41] is a
system for cross-cloud file collaboration. Our work differs
from it in that, CoCloud focuses on efficient file transmission
among different cloud storage providers (e.g., collaborations
between Baidu Cloud and Dropbox), whereas our work tends
to provide collision-free collaboration editing services in cloud
storage platforms. UFC2 [26] presents an alternative way
for addressing the conflict issue in collaboration with cloud
storage services. It achieves this by automatically merging
conflicting versions after conflicts appear. Nevertheless, this
approach needs cloud service providers to modify their system
implementations. In contrast, we present a lightweight solution
that solves this issue with plug-ins – it only needs the client
to run our client-side software (e.g., merely several Mb under
Windows operating system). The only industrial solution to
conquer the conflict issue is the Dropbox Badge [18], which
only serves for Microsoft Office, thus has limited scalability.

VI. FUTURE WORK

In this paper, we explore the possibility of conflict-free
collaborations with cloud storage service, and propose the
ConflictReaper to achieve this goal. The primary experiment
indicates that ConflictReaper only causes imperceptible over-
head in CPU utilization and network traffic. Our future work
includes evaluating its performance in more aspects and de-
tails, e.g., the accuracy of traffic-based sync status deduction,
and CPU and traffic consumption in editing and sync files
under real-world file editing and synchronization workloads.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China (NSFC) under grants 61822205,

61632020, 61632013 and 61902211.

REFERENCES

[1] Amazon Drive. http://www.amazon.com/clouddrive.
[2] Apple Music passes 11M subscribers as iCloud hits 782M

users. http://appleinsider.com/articles/16/02/12/apple-music-passes-
11m-subscribers-as-icloud-hits-782m-users.

[3] By the Numbers: 22 Staggering Dropbox Statistics (July 2017). https:
//expandedramblings.com/index.php/dropbox-statistics/.

[4] Dropbox — Company Info - Dropbox. https://www.dropbox.com/news/
company-info.

[5] Dropbox API Explorer. https://dropbox.github.io/dropbox-api-v2-
explorer/.

[6] Evolution of Dropbox’s Edge Network. https://blogs.dropbox.com/tech/
2017/06/evolution-of-dropboxs-edge-network.

[7] File version history. https://www.dropbox.com/help/security/version-
history-overview.

[8] gcsfuse. https://github.com/GoogleCloudPlatform/gcsfuse.
[9] Goofys. https://github.com/kahing/goofys.

[10] Google Drive. https://www.google.com/drive/.
[11] Inside the Magic Pocket. https://dropbox.tech/infrastructure/inside-the-

magic-pocket.
[12] Microsoft OneDrive. https://onedrive.live.com/.
[13] Optimizing web servers for high throughput and low latency.

https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-
high-throughput-and-low-latency.

[14] Panzura Global Cloud File System. https://panzura.com/technology/.
[15] S3Fuse. https://github.com/s3fs-fuse/s3fs-fuse.
[16] S3QL. https://bitbucket.org/nikratio/s3ql/.
[17] SVFS. https://github.com/ovh/svfs.
[18] What is the Dropbox badge? https://www.dropbox.com/help/business/

badge-overview.
[19] What’s keeping you from dropping Dropbox? https://forum.syncthing.

net/t/whats-keeping-you-from-dropping-dropbox/3022.
[20] YAS3FS. https://github.com/danilop/yas3fs.
[21] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A View of Cloud
Computing. Communications of the ACM, 53(4):50–58, 2010.

[22] G. Banga, F. Douglis, M. Rabinovich, et al. Optimistic Deltas for WWW
Latency Reduction. In Proceedings of the USENIX Annual Technical
Conference (ATC), page 289–304.

[23] A. Bergen, Y. Coady, and R. McGeer. Client bandwidth: The forgotten
metric of online storage providers. In Proceedings of the Pacific
Rim Conference on Communications, Computers and Signal Processing
(PacRim), pages 543–548. IEEE, 2011.

[24] A. N. Bessani, R. Mendes, T. Oliveira, N. F. Neves, M. Correia,
M. Pasin, and P. Verissimo. SCFS: A Shared Cloud-backed File System.
In Proc. of USENIX ATC, pages 169–180, 2014.

[25] E. Bocchi, I. Drago, and M. Mellia. Personal Cloud Storage Benchmarks
and Comparison. IEEE Transactions on Cloud Computing, 5(4):751 –
764, 2017.

[26] J. Chen, M. Zhao, Z. Li, E. Zhai, F. Qian, H. Chen, Y. Liu, and
T. Xu. Lock-Free Collaboration Support for Cloud Storage Services
with Operation Inference and Transformation. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST), pages
13–27, 2020.

[27] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing (SoCC), pages 143–154.
ACM, 2010.

[28] Y. Cui, Z. Lai, X. Wang, and N. Dai. QuickSync: Improving Syn-
chronization Efficiency for Mobile Cloud Storage Services. IEEE
Transactions on Mobile Computing, 16(12):3513–3526, 2017.

[29] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras. Benchmarking
Personal Cloud Storage. In Proceedings of the Internet Measurement
Conference (IMC), pages 205–212. ACM, 2013.

[30] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and A. Pras.
Inside Dropbox: Understanding Personal Cloud Storage Services. In
Proceedings of the Internet Measurement Conference (IMC), pages 481–
494. ACM, 2012.

[31] S. S. Gill and R. Buyya. A Taxonomy and Future Directions for
Sustainable Cloud Computing: 360 Degree View. ACM Computing
Surveys (CSUR), 51(5):104, 2018.

http://www.amazon.com/clouddrive
http://appleinsider.com/articles/16/02/12/apple-music-passes-11m-subscribers-as-icloud-hits-782m-users
http://appleinsider.com/articles/16/02/12/apple-music-passes-11m-subscribers-as-icloud-hits-782m-users
https://expandedramblings.com/index.php/dropbox-statistics/
https://expandedramblings.com/index.php/dropbox-statistics/
https://www.dropbox.com/news/company-info
https://www.dropbox.com/news/company-info
https://dropbox.github.io/dropbox-api-v2-explorer/
https://dropbox.github.io/dropbox-api-v2-explorer/
https://blogs.dropbox.com/tech/2017/06/evolution-of-dropboxs-edge-network
https://blogs.dropbox.com/tech/2017/06/evolution-of-dropboxs-edge-network
https://www.dropbox.com/help/security/version-history-overview
https://www.dropbox.com/help/security/version-history-overview
https://github.com/GoogleCloudPlatform/gcsfuse
https://github.com/kahing/goofys
https://www.google.com/drive/
https://dropbox.tech/infrastructure/inside-the-magic-pocket
https://dropbox.tech/infrastructure/inside-the-magic-pocket
https://onedrive.live.com/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency
https://panzura.com/technology/
https://github.com/s3fs-fuse/s3fs-fuse
https://bitbucket.org/nikratio/s3ql/
https://github.com/ovh/svfs
https://www.dropbox.com/help/business/badge-overview
https://www.dropbox.com/help/business/badge-overview
https://forum.syncthing.net/t/whats-keeping-you-from-dropping-dropbox/3022
https://forum.syncthing.net/t/whats-keeping-you-from-dropping-dropbox/3022
https://github.com/danilop/yas3fs

[32] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu. Reliable, Consistent,
and Efficient Data Sync for Mobile Apps. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST), pages
359–372. USENIX Association, 2015.

[33] G. Gonçalves, I. Drago, A. P. C. Da Silva, A. B. Vieira, and J. M.
Almeida. Modeling the Dropbox Client Behavior. In Proceedings of
the IEEE International Conference on Communications (ICC), pages
1332–1337. IEEE, 2014.

[34] R. Gracia-Tinedo, M. S. Artigas, A. Moreno-Martinez, C. Cotes, and
P. G. Lopez. Actively Measuring Personal Cloud Storage. In Proceed-
ings of the 6th International Conference on Cloud Computing (CLOUD),
pages 301–308. IEEE, 2013.

[35] R. Gracia-Tinedo, Y. Tian, J. Sampé, H. Harkous, J. Lenton, P. Garcı́a-
López, M. Sánchez-Artigas, and M. Vukolic. Dissecting UbuntuOne:
Autopsy of a Global-scale Personal Cloud Back-end. In Proceedings
of the 2015 Internet Measurement Conference(IMC), pages 155–168.
ACM, 2015.

[36] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. E. Anderson, and
D. Wetherall. MetaSync: File Synchronization Across Multiple Un-
trusted Storage Services. In Proceedings of the USENIX Annual
Technical Conference (ATC), pages 83–95, 2015.

[37] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey. Early Ob-
servations on the Performance of Windows Azure. In Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing (HPDC), pages 367–376. ACM, 2010.

[38] B. Hou, F. Chen, Z. Ou, R. Wang, and M. Mesnier. Understanding I/O
Performance Behaviors of Cloud Storage from a Client’s Perspective.
ACM Transactions on Storage (TOS), 13(2):16, 2017.

[39] C. Hu, Y. Xu, P. Liu, J. Yu, S. Guo, and M. Zhao. Enabling Cloud
Storage Auditing with Key-exposure Resilience under Continual Key-
leakage. Information Sciences, 520:15–30, 2020.

[40] W. Hu, T. Yang, and J. N. Matthews. The Good, the Bad and the Ugly
of Consumer Cloud Storage. ACM SIGOPS Operating Systems Review,
44(3):110–115, 2010.

[41] E. Jinlong, Y. Cui, P. Wang, Z. Li, and C. Zhang. CoCloud: Enabling
efficient cross-cloud file collaboration based on inefficient web APIs.
IEEE Transactions on Parallel and Distributed Systems, 29(1):56–69,
2018.

[42] E. Kruus, C. Ungureanu, and C. Dubnicki. Bimodal Content Defined
Chunking for Backup Streams. In Proceedings of the 8th USENIX
conference on File and storage technologies (FAST), pages 18–18.
USENIX Association, 2010.

[43] G. Lee, H. Ko, and S. Pack. An Efficient Delta Synchronization
Algorithm for Mobile Cloud Storage Applications. IEEE Transactions
on Services Computing, 10(3):341–351, 2017.

[44] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: Comparing
Public Cloud Providers. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement(IMC), pages 1–14. ACM, 2010.

[45] S. Li, Q. Zhang, Z. Yang, and Y. Dai. Understanding and Surpassing
Dropbox: Efficient Incremental Synchronization in Cloud Storage Ser-
vices. In Proceedings of the IEEE Global Communications Conference
(GLOBECOM), pages 1–7. IEEE, 2015.

[46] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai, and Z.-
L. Zhang. Towards Network-level Efficiency for Cloud Storage Services.
In Proceedings of the Internet Measurement Conference (IMC), pages
115–128. ACM, 2014.

[47] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-L. Zhang,
and Y. Dai. Efficient Batched Synchronization in Dropbox-like Cloud
Storage Services. In Proceedings of the International Middleware
Conference (Middleware), pages 307–327. ACM/IFIP/USENIX, 2013.

[48] Z. Li, Y. Zhang, Y. Liu, T. Xu, E. Zhai, Y. Liu, X. Ma, and Z. Li.
A Quantitative and Comparative Study of Network-level Efficiency
for Cloud Storage Services. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (TOMPECS), 4(1):1–32,
2019.

[49] K. Lillaney, V. Tarasov, D. Pease, and R. Burns. Agni: An efficient
dual-access file system over object storage. In Proceedings of the ACM
Symposium on Cloud Computing, pages 390–402, 2019.

[50] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: Cloud Storage with Minimal Trust. ACM
Transactions on Computer Systems (TOCS), 29(4):12, 2011.

[51] Y. Mansouri, A. N. Toosi, and R. Buyya. Data Storage Management in
Cloud Environments: Taxonomy, survey, and Future Directions. ACM
Computing Surveys (CSUR), 50(6):91, 2018.

[52] R. Nachiappan, B. Javadi, R. N. Calheiros, and K. M. Matawie. Cloud
storage reliability for big data applications: A state of the art survey.
Journal of Network and Computer Applications, 97:35–47, 2017.

[53] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. Amazon
S3 for Science Grids: A Viable Solution? In Proceedings of the
International Workshop on Data-aware Distributed Computing (DADC),
pages 55–64. ACM, 2008.

[54] R. Pontes, D. Burihabwa, F. Maia, J. Paulo, V. Schiavoni, P. Felber,
H. Mercier, and R. Oliveira. Safefs: A modular architecture for secure
user-space file systems: One fuse to rule them all. In Proceedings of
the 10th ACM International Systems and Storage Conference (SYSTOR),
pages 1–12, 2017.

[55] C. Qu, R. N. Calheiros, and R. Buyya. Auto-scaling Web Applications
in Clouds: A Taxonomy and Survey. ACM Computing Surveys (CSUR),
51(4):73, 2018.

[56] M. Ruan, T. Titcheu, E. Zhai, Z. Li, Y. Liu, E. Jinlong, Y. Cui, and
H. Xu. On the synchronization bottleneck of openstack swift-like cloud
storage systems. IEEE Transactions on Parallel and Distributed Systems,
29(9):2059–2074, 2018.

[57] N. Samteladze and K. Christensen. DELTA: Delta Encoding for Less
Traffic for Apps. In Proceedings of the 37th Conference on Local
Computer Networks (LCN), pages 212–215. IEEE, 2012.

[58] Y. Shi, X. Meng, J. Zhao, X. Hu, B. Liu, and H. Wang. Benchmarking
Cloud-based Data Management Systems. In Proceedings of the second
International Workshop on Cloud Data Management (CloudDB), pages
47–54. ACM, 2010.

[59] J. Tang, Y. Cui, Q. Li, K. Ren, J. Liu, and R. Buyya. Ensuring Security
and Privacy Preservation for Cloud Data Services. ACM Computing
Surveys (CSUR), 49(1):13, 2016.

[60] W. F. Tichy. RCS – A System for Version Control. Software: Practice
and Experience, 15(7):637–654, 1985.

[61] A. Tridgell, P. Mackerras, et al. The rsync Algorithm. The Australian
National University, 1996.

[62] M. Vrable, S. Savage, and G. M. Voelker. Cumulus: Filesystem Backup
to the Cloud. ACM Transactions on Storage (TOS), 5(4):14, 2009.

[63] M. Vrable, S. Savage, and G. M. Voelker. Bluesky: A Cloud-backed
File System for the Enterprise. In Proceedings of the 10th USENIX
conference on File and Storage Technologies (FAST). USENIX, 2012.

[64] H. Wang, H. Qin, M. Zhao, X. Wei, H. Shen, and W. Susilo. Blockchain-
based Fair Payment Smart Contract for Public Cloud Storage Auditing.
Information Sciences, 519:348–362, 2020.

[65] J. Wang, L. Wu, S. Zeadally, M. K. Khan, and D. He. Privacy-
preserving Data Aggregation Against Malicious Data Mining Attack
for IoT-enabled Smart Grid. ACM Transactions on Sensor Networks
(TOSN), 17(3):1–25, 2021.

[66] H. Xiao, Z. Li, E. Zhai, and T. Xu. Practical Web-based Delta
Synchronization for Cloud Storage Services. In Proceedings of the
9th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage). USENIX, 2017.

[67] H. Xiao, Z. Li, E. Zhai, T. Xu, Y. Li, Y. Wang, Q. Zhang, and
Y. Liu. Towards Web-based Delta Synchronization for Cloud Storage
Services. In Proceeding of the USENIX Conference on File and Storage
Technologies (FAST). USENIX Association, 2018.

[68] Q. Zhang, Z. Li, Z. Yang, S. Li, S. Li, Y. Guo, and Y. Dai. DeltaCFS:
Boosting Delta Sync for Cloud Storage Services by Learning from NFS.
In Proceedings of the IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 264–275. IEEE, 2017.

[69] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
ViewBox: Integrating Local File Systems with Cloud Storage Services.
In Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST), pages 119–132, 2014.

[70] M. Zhao, Z. Li, E. Zhai, G. Tyson, C. Qian, Z. Li, and L. Zhao. H2Cloud:
Maintaining the Whole Filesystem in an Object Storage Cloud. In
Proceedings of the 47th International Conference on Parallel Processing
(ICPP), pages 1–10, 2018.

	Introduction
	Motivating Analysis
	ConflictReaper
	System Design
	Implementation

	Performance Evaluation
	Related Works
	Future Work
	References

